Paderewski Pond Assessment and Alternatives Analysis Presented by: Loureiro Engineering Associates, Inc. December 5, 2016

Agenda

- Introduction
- Background
- Sampling Approach and Results
- Alternatives Assessment
 - Pond Dredging
 - Aeration, Pond Mixing
 - Vegetation and Algae Management
- Summary And Conclusion

Introduction

- Loureiro Engineering Associates, Inc. –
 Plainville, CT
- Tunxis Laboratories LLC Plainville, CT
- LandTech Consultants Westport, CT

Background

- Paderewski Pond 15.8 acre pond with depths varying from about 2-feet to 7-feet deep.
- Surrounded by residential properties and a town park
- Two point source discharges observed

Documented Fish Kills

- **Fish Kill** An event where large numbers of fish die, indicating a problem in the body of water. Fish kills can be caused by a variety of factors including dissolved oxygen depletion, extreme water temperatures, fish diseases or introduction of pollutants. Most fish kills are natural events.
- September 2015 fish kill more than 1,000 fish lost
- Prior fish kill documented by DEEP in 2000
- DEEP attributed loss to low DO levels

Prior Studies

- Previous Connecticut Agricultural Experiment Station studies
- Aquatic Plant Program Survey August 24, 2005
 - Native Elodea nuttallii (waterweed) grew extremely abundantly
 - Potamogeton pusillus (Pondweed)
 - Potamogeton amplifolius (Native big leaf pondweed)
 - Invasive Najas minor
 - Najas flexilis (bushy pondweed)
 - Myriophyllum spicatum (Invasive Eurasian watermilfoil)

Waterweed

Plainville WPCF

 The Town of Plainville WPCF has been monitoring Paderewski Pond since April 2016
 (12" from bottom)

DO Readings

Plainville WPCF

Temperature Readings

Loureiro Observations August 23, 2016

Loureiro Sampling and Analyses

- August 23, 2016 –
- Four Quadrants
 Sampled, water and
 sediment
- Water profilesobserved for fieldParameters:
 - Temp., DO, Specific Conductivity and pH

Field Sampling

DO Readings

Field Sampling

Temperature Readings

Laboratory Analyses – Water Samples

			Pond Wat	Healthy Pond		
Test	Units	1	2	3	4	
Depth (ft)		3	1.5	1	2	
Quadrant		1	2	3	4	
рН	su	8.2	7.7	8.8	9.4	6.0-9.0
Orthophosphate	mg/L as PO4	<0.031	<0.031	<0.031	<0.031	0.005-0.5 mg/L
Specific Conductivity	umhos/cm	280	280	300	290	less than 1275 umhos/cm
Total Alkalinity	mg/L	27	26	28	25	50-150 mg/L **
Total Kjeldahl Nitrogen	mg/L	4.3	<1.3	1.6	1.5	1.2-3.0
Copper	mg/L	<0.005	<0.005	<0.005	<0.005	0.001-0.01 mg/L
Iron	mg/L	1.5	0.25	0.345	0.206	less than 0.3 mg/L
Lead	mg/L	<0.010	<0.010	<0.010	<0.010	less than 0.07 mg/L
Manganese	mg/L	0.208	<0.010	0.026	0.012	less than 0.05 mg/L
Nickel	mg/L	<0.010	<0.010	<0.010	<0.010	-
Total Phosphorus	mg/L as P	0.09	0.017	0.026	0.019	less than 0.025 mg/L
Zinc	mg/L	<0.010	<0.010	<0.010	<0.010	0.5-1.0 mg/L
Dissolved Oxygen	mg/L	5.45	5.52	6.61	6.58	6-10 mg/L **
Temperature	Celsius	24.74	25.63	26.83	26.97	26-32 Degrees C

Laboratory Analyses – Sediment Samples

As Received Basis

		Bottom Sediment Sample				
Test Units		1	2	3	4	
Depth (ft)		6.17	3.17	2.83	4.08	
Quadrant		1	2	3	4	
Chemical Oxygen Demand	mg/kg as received	33350	25493	4761.6	5472	
Copper	mg/kg as received	5.98	5.3391	3.40224	4.4784	
Iron	mg/kg as received	4324	4430.01	4085.76	4320	
Lead	mg/kg as received	19.665	6.4454	1.71264	2.376	
Manganese	mg/kg as received	45.425	56.277	73.5744	58.176	
Nickel	mg/kg as received	3.6225	3.7037	3.02592	2.8872	
Zinc	mg/kg as received	25.99	17.316	11.52	11.232	

Summary of Analytical Findings

- Majority of parameters fell into Healthy Pond Range for water samples with minor excursions for pH, TKN, Fe, Mn and P.
- Variability in sediment samples due to the percent solids present. As received basis – much more consistent and below background.

Alternatives Assessment

- Pond Dredging effective at removal of nutrient rich sediments, base BOD load and pond weeds.
- Pond is very shallow, no beneficial thermal stratification observed.
- Depth and reduction in BOD associated with bottom sediments will improve overall pond health.

Pond Dredging - Implementation

- Mechanical or Hydraulic
- Mechanical Use excavator. Need to dewater and will affect fringe considerably. Lots of silt in water column.
- Hydraulic Faster and cost effective. Cutter head and pump system with dewatering landward. Space in park and parking lot for dewatering.

Pond Dredging - Permitting

- US Army Corps of Engineers Section 404
 permit may fall under a self verification
 under the new GP.
- Connecticut DEEP Water Quality Certification
- Local IWWC permit

Aeration – Pond Mixing

- Aeration adds oxygen to the pond and circulates deeper, cooler waters from the bottom to the surface.
- Increases and stabilize the amount of dissolved oxygen in the entire water column
- Encourages growth of aerobic bacteria enhancing the breakdown of organic matter and nutrients, thereby reducing algae.

Aeration - Implementation

- Fountains and diffusors are typically implemented.
- Diffusors ineffective in shallow ponds like Paderewski Pond.
- Electrically operated pumps supported by a float anchored to the bottom. Installed seasonally and removed in the winter.
- Need to be designed and sized to effectively facilitate complete mixing (usually 1-2 HP/acre)

Aeration - Permitting

- Temporarily installed aerators can be installed without US ACE or DEEP permits.
 Local permits may be required.
- Permanent installations would required US ACE or DEEP permits.

Vegetation and Algae Management

- Paderewski Pond has significant vegetation primarily Elodea nuttallii (waterweed).
- Matting of the surface was observed on August 23, 2016 thereby reducing sunlight to the lower depths of water.
- This reduces photosynthesis (oxygen production) and enhances respiration (oxygen consumption).

Vegetation and Algae Management - Implementation

- Can be accomplished by mechanical weed harvesting or herbicide treatment.
- Both are short-term fixes to a larger problem.
- Herbicide treatment leaves the plant material and nutrients within the water body and must be repeated at least annually and more likely twice per year.
- Weed harvesting removes the plant material but must be repeated annually.

Vegetation and Algae Management - Permitting

- Permitting from the DEEP is required for herbicide application and the hired applicator must be licensed.
- Local permitting may be required, depending on specific IW requirements.
- Paderewski Pond is NOT located in a Aquifer Protection Zone or an NDDB area, so permitting should be straightforward.

Conclusions and Recommendations

- Historic fish kills have resulted from reduced DO levels in the pond.
- Based upon field monitoring and laboratory analysis of collected samples, the health of the pond is satisfactory at the time of sampling.
 - Significant stratification was not present
 - Contaminants were not excessive
 - Excessive nutrients were not apparent
- Of the three alternatives evaluated, pond dredging offers the most effective long-term management technique to enhancing the ecosystem of the pond.

Conclusions and Recommendations

- Aeration can provide enhanced mixing and DO distribution throughout the water column, but won't solve the overabundance of weed growth.
- Vegetation management can provide potential short-term improvements, but can also exacerbate the low DO levels by further amassing organic loads in the sediment from deadloss.

Next Steps

- Study the pond further with a bathymetry survey to facilitate volume calculations and estimated costs and logistics associated with the implementation of a pond dredging solution.
- Further investigate the permitting requirements and applicability of the new US ACE General Permit.

